Sector Area Calculator

Calculate the area of a circle sector in multiple ways: from radius and angle (deg or rad), from diameter, or from arc length. You also get arc length, sector perimeter, central angle in both degrees and radians, and the sector’s percentage of the full circle.

same unit for all

central angle

Sector formulas used

Area from degrees: \( A = \frac{\theta}{360^\circ} \cdot \pi r^2 \)

Area from radians: \( A = \frac{1}{2} r^2 \theta \)

Arc length (deg): \( L = \frac{\theta}{360^\circ} \cdot 2 \pi r \)

Arc length (rad): \( L = r \theta \)

From arc length and radius: \( \theta = \frac{L}{r} \) (rad), then \( A = \frac{1}{2} r L \)

Sector perimeter: \( P = 2r + L \)

FAQs

What units does this calculator support?

Any length unit: cm, m, in, ft — just be consistent. Area will be in the squared version of that unit.

What’s the fastest way if I only know the arc length?

Use the “Arc length + Radius” tab; it computes the angle automatically and then the area.

What if I want semicircle or quarter circle?

Use the % tab: 50% → semicircle, 25% → quarter circle, 12.5% → 45° sector.


Audit: Complete
Formula (LaTeX) + variables + units
This section shows the formulas used by the calculator engine, plus variable definitions and units.
Formula (extracted LaTeX)
\[','\\]
','\
Formula (extracted text)
Area from degrees: \( A = \frac{\theta}{360^\circ} \cdot \pi r^2 \) Area from radians: \( A = \frac{1}{2} r^2 \theta \) Arc length (deg): \( L = \frac{\theta}{360^\circ} \cdot 2 \pi r \) Arc length (rad): \( L = r \theta \) From arc length and radius: \( \theta = \frac{L}{r} \) (rad), then \( A = \frac{1}{2} r L \) Sector perimeter: \( P = 2r + L \)
Variables and units
  • No variables provided in audit spec.
Sources (authoritative):
Changelog
Version: 0.1.0-draft
Last code update: 2026-01-19
0.1.0-draft · 2026-01-19
  • Initial audit spec draft generated from HTML extraction (review required).
  • Verify formulas match the calculator engine and convert any text-only formulas to LaTeX.
  • Confirm sources are authoritative and relevant to the calculator methodology.
Verified by Ugo Candido on 2026-01-19
Profile · LinkedIn
, ', svg: { fontCache: 'global' } }; ]], displayMath: [['\\[','\\]']] }, svg: { fontCache: 'global' } };, svg: { fontCache: 'global' } };