Regression Calculator

Enter X–Y pairs and this tool will run a simple linear regression of Y on X. You get the regression line (slope & intercept), the correlation coefficient, R², standard error, and a quick ANOVA table. You can also enter an X value to get a predicted Y.

# X Y
1
2
3

Equation

r (correlation)

Predicted Y

Blue dots: data points; Orange line: fitted regression line (first 60 points shown).

ANOVA (simple regression)

Source SS df MS
Regression
Residual (Error)
Total

Formulas used

Regression line: \( y = a + bx \)

\( b = \dfrac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)

\( a = \bar{y} - b\bar{x} \)

Correlation: \( r = \dfrac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \)

R²: \( R^2 = 1 - \dfrac{\text{SSE}}{\text{SST}} \)

Interpreting results

  • r close to ±1 ⇒ strong linear relationship.
  • close to 1 ⇒ model explains most of the variability.
  • Check the scatterplot to ensure linearity – regression is a linear model.