Pyramid Calculator

Calculate volume, lateral surface area, total surface area, base area and slant height of a right pyramid. Supports square and rectangular bases. Suitable for math homework, DIY construction and 3D modeling.

Square & rectangular Formula-based Step-friendly

Height is measured perpendicular from base to apex.

Pyramid formulas used

This tool uses the general pyramid volume formula and specific surface-area formulas for square and rectangular bases.

1. Volume of a pyramid

\( V = \frac{1}{3} B h \)

where \( B \) is the base area and \( h \) is the vertical height.

2. Square pyramid

Base area: \( B = a^2 \)

Slant height: \( \ell = \sqrt{ \left(\frac{a}{2}\right)^2 + h^2 } \)

Lateral area: \( A_L = 2 a \ell \)

Total area: \( A_T = a^2 + 2 a \ell \)

3. Rectangular pyramid

Base area: \( B = a b \)

Slant height along side a: \( \ell_a = \sqrt{ \left(\frac{b}{2}\right)^2 + h^2 } \)

Slant height along side b: \( \ell_b = \sqrt{ \left(\frac{a}{2}\right)^2 + h^2 } \)

Lateral area: \( A_L = a \ell_a + b \ell_b \)

Total area: \( A_T = ab + a \ell_a + b \ell_b \)

Example

Example: Square pyramid with base side 6 m and height 9 m.

  1. Base area \( B = 6^2 = 36 \text{ m}^2 \)
  2. Volume \( V = \frac{1}{3} \times 36 \times 9 = 108 \text{ m}^3 \)
  3. Slant height \( \ell = \sqrt{(6/2)^2 + 9^2} = \sqrt{9 + 81} = \sqrt{90} \approx 9.487 \text{ m} \)
  4. Lateral area \( A_L = 2 \times 6 \times 9.487 \approx 113.84 \text{ m}^2 \)
  5. Total area \( A_T = 36 + 113.84 \approx 149.84 \text{ m}^2 \)

The calculator runs these steps automatically.

Pyramid Calculator – FAQ