Heat Transfer Calculator

Estimate heat transfer using conduction, convection, or radiation inputs.

Results

Mode Conduction
Temperature difference ΔT 60.00 K
Heat transfer rate Q 1,230.00 W
Heat flux q″ 1,230.00 W/m²

Data Source and Methodology

Authoritative references:

Tutti i calcoli si basano rigorosamente sulle formule e sui dati forniti da questa fonte.

The Formulas Explained

Conduction (Fourier’s law for a plane wall)

Q = k A ΔT / L

q'' = Q / A

In LaTeX:

Q = k\,A\,\frac{\Delta T}{L}, \quad q'' = \frac{Q}{A}


Convection (Newton’s law of cooling)

Q = h A ΔT

q'' = h ΔT

In LaTeX:

Q = h\,A\,\Delta T, \quad q'' = h\,\Delta T


Thermal radiation (Stefan–Boltzmann, diffuse-grey surfaces)

Q = ε σ A (T_h^4 − T_c^4)

q'' = ε σ (T_h^4 − T_c^4)

In LaTeX:

Q = \varepsilon \,\sigma\,A \left(T_h^{4}-T_c^{4}\right), \quad q'' = \varepsilon \,\sigma \left(T_h^{4}-T_c^{4}\right)

Glossary of Variables

How It Works: A Step-by-Step Example

Scenario: A 10 mm aluminum plate (k = 205 W/(m·K)) with area A = 1.0 m² separates a hot chamber at 80 °C from ambient at 20 °C.

  1. Choose Conduction and SI.
  2. Enter A = 1.0 m², k = 205 W/(m·K), L = 0.01 m, T_hot = 80 °C, T_cold = 20 °C.
  3. Compute ΔT = 80 − 20 = 60 K.
  4. Apply Fourier’s law: Q = k A ΔT / L = 205 × 1.0 × 60 / 0.01 = 1,230,000 W.
  5. Heat flux: q″ = Q / A = 1,230,000 / 1.0 = 1,230,000 W/m².

In real systems, contact resistances, multi-layer walls, or non-uniform temperatures may reduce this idealized value.

Frequently Asked Questions (FAQ)

Do I need absolute temperature (K or R) for conduction and convection?

No. Only the difference ΔT matters, so °C or °F work equivalently. The tool handles this automatically.

Does the radiation formula require view factors?

This simplified calculator assumes a large surrounding at T_c with a view factor of 1 and a diffuse-grey surface. For enclosure radiation, view factors are required.

What if I have multiple layers in a wall?

Compute the total thermal resistance R_total = Σ(L_i/(k_i A)), then Q = ΔT / R_total. A multi-layer module will be added in a future update.

How should I pick h (heat transfer coefficient)?

h depends on geometry, flow, and properties. Use correlations from textbooks or vendor data. Typical natural convection in air is 2–10 W/(m²·K).

Is emissivity constant with temperature?

It can vary. Use data for the relevant temperature range. Polished metals often have low ε that changes as they oxidize.

Can I compute heat loss direction?

Yes. The sign follows T_hot − T_cold. This tool reports the magnitude; heat flows from hot to cold.

How precise are the constants?

The Stefan–Boltzmann constant uses CODATA 2018 value. Unit conversions are performed in double precision.


Audit: Complete
Formula (LaTeX) + variables + units
This section shows the formulas used by the calculator engine, plus variable definitions and units.
Formula (extracted LaTeX)
\[','\]
','
Formula (extracted LaTeX)
\[= (sel, ctx=document) => Array.from(ctx.querySelectorAll(sel)); const inputs = { area: el('area'), k: el('k'), thickness: el('thickness'), h: el('h'), emissivity: el('emissivity'), tHot: el('tHot'), tCold: el('tCold') }; const modeRadios =\]
= (sel, ctx=document) => Array.from(ctx.querySelectorAll(sel)); const inputs = { area: el('area'), k: el('k'), thickness: el('thickness'), h: el('h'), emissivity: el('emissivity'), tHot: el('tHot'), tCold: el('tCold') }; const modeRadios =
Formula (extracted LaTeX)
\[('input[name="units"]'); const tempUnitRadios =\]
('input[name="units"]'); const tempUnitRadios =
Formula (extracted LaTeX)
\[('.mode-conduction-only'); const groupConvection =\]
('.mode-conduction-only'); const groupConvection =
Formula (extracted LaTeX)
\[('.mode-radiation-only'); const unitArea = el('unit-area'); const unitK = el('unit-k'); const unitL = el('unit-thickness'); const unitH = el('unit-h'); const unitTemp1 = el('unit-temp'); const unitTemp2 = el('unit-temp-2'); const resMode = el('res-mode'); const resDt = el('res-dt'); const resQ = el('res-q'); const resQflux = el('res-qflux'); const resExtra = el('res-extra'); const resExtraLabel = el('res-extra-label'); const resExtraValue = el('res-extra-value'); const tooltipButtons =\]
('.mode-radiation-only'); const unitArea = el('unit-area'); const unitK = el('unit-k'); const unitL = el('unit-thickness'); const unitH = el('unit-h'); const unitTemp1 = el('unit-temp'); const unitTemp2 = el('unit-temp-2'); const resMode = el('res-mode'); const resDt = el('res-dt'); const resQ = el('res-q'); const resQflux = el('res-qflux'); const resExtra = el('res-extra'); const resExtraLabel = el('res-extra-label'); const resExtraValue = el('res-extra-value'); const tooltipButtons =
Formula (extracted text)
Conduction (Fourier’s law for a plane wall) Q = k A ΔT / L q'' = Q / A In LaTeX: Q = k\,A\,\frac{\Delta T}{L}, \quad q'' = \frac{Q}{A} Convection (Newton’s law of cooling) Q = h A ΔT q'' = h ΔT In LaTeX: Q = h\,A\,\Delta T, \quad q'' = h\,\Delta T Thermal radiation (Stefan–Boltzmann, diffuse-grey surfaces) Q = ε σ A (T_h^4 − T_c^4) q'' = ε σ (T_h^4 − T_c^4) In LaTeX: Q = \varepsilon \,\sigma\,A \left(T_h^{4}-T_c^{4}\right), \quad q'' = \varepsilon \,\sigma \left(T_h^{4}-T_c^{4}\right)
Variables and units
  • No variables provided in audit spec.
Sources (authoritative):
Changelog
Version: 0.1.0-draft
Last code update: 2026-01-19
0.1.0-draft · 2026-01-19
  • Initial audit spec draft generated from HTML extraction (review required).
  • Verify formulas match the calculator engine and convert any text-only formulas to LaTeX.
  • Confirm sources are authoritative and relevant to the calculator methodology.
Verified by Ugo Candido on 2026-01-19
Profile · LinkedIn