Loan caps: \( \text{Loan}_{LTV} = \text{LTV}\_{\%} \times \text{ARV} \) \( \text{Loan}_{LTC} = \text{LTC}\_{\%} \times (\text{Purchase} + \text{Rehab}) \) \( \text{Loan} = \min\big(\text{Loan}_{LTV},\ \text{Loan}_{LTC}\big) \) Points (paid at closing): \( \text{Points\$} = \text{Loan} \times \text{Points}\_{\%} \) Interest-only payment per month: \( \text{Pmt} = \text{Loan} \times \dfrac{\text{APR}}{12} \) Amortizing payment: \( \text{Pmt} = P \cdot \dfrac{i(1+i)^n}{(1+i)^n-1} \) where \(i=\frac{\text{APR}}{12}\), \(n=\text{months}\). Cash to close (simplified): \( \text{CashClose} = (\text{Purchase}+\text{Rehab}-\text{Loan}) + \text{Points\$} + \text{Origination} + \text{OtherClosing} \) Total financing cost: \( \text{FinanceCost} = \text{TotalInterest} + \text{Points\$} + \text{Origination} \) Profit (flip): \( \text{Profit} = \text{SalePrice} \times (1-\text{SellCost}\_{\%}) - (\text{Purchase}+\text{Rehab}) - \text{FinanceCost} - \text{Holding} \times n \) ROI on cash: \( \text{ROI} = \dfrac{\text{Profit}}{\text{CashClose}} \)