This authoritative tool helps structural engineers and civil engineering students design the shear resistance of reinforced concrete beams according to Eurocode 2 (EN 1992-1-1). It computes concrete shear resistance VRd,c, checks VRd,max, and determines the required shear reinforcement Asw/s and spacing for selected stirrups, ensuring clarity, accessibility, and traceability to the standard.
Data Source and Methodology
Authoritative standard: EN 1992-1-1:2004 + A1:2014 Eurocode 2 — Design of concrete structures — Part 1-1: General rules and rules for buildings. Clauses 6.2.2 (VRd,c), 6.2.3 (VRd,max and VRd,s), and 9.2.2 (minimum shear reinforcement). Direct reference (open access where available):
- EN 1992-1-1:2004 (PDF)
- Eurocode Applied — Shear force design summary
- The Concrete Centre — Shear (Eurocode 2)
All calculations are strictly based on the formulas and data provided by this source.
The Formula Explained
Concrete shear resistance (EN 1992-1-1, 6.2.2):
$$V_{Rd,c} = \max\Big\{\big[C_{Rd,c}\, k\, (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp}\big],\; \big[v_{min} + k_1 \sigma_{cp}\big]\Big\}\, b_w d$$
with
$$k = 1 + \sqrt{200/d} \le 2.0,\quad C_{Rd,c}=\frac{0.18}{\gamma_c},\quad k_1=0.15,\quad v_{min}=0.035\,k^{3/2}\sqrt{f_{ck}}$$
Axial stress (compression positive):
$$\sigma_{cp} = \min\!\left(\frac{N_{Ed}}{A_c},\; 0.2\,f_{cd}\right),\quad f_{cd}=\alpha_{cc}\frac{f_{ck}}{\gamma_c}$$
Shear with reinforcement (EN 1992-1-1, 6.2.3):
$$V_{Rd,s} = \frac{A_{sw}}{s}\, z\, f_{ywd}\, \cot\theta,\quad z \approx 0.9 d,\quad f_{ywd}=\min\!\left(\frac{f_{yk}}{\gamma_s},\; 435\text{ MPa}\right)$$
Maximum shear capacity:
$$V_{Rd,\max} = \frac{\alpha_{cw}\, b_w\, z\, v_1\, f_{cd}}{\cot\theta + \tan\theta},\quad v_1 = 0.6\left(1-\frac{f_{ck}}{250}\right),\quad \alpha_{cw}\approx 1.0$$
Minimum shear reinforcement (EN 1992-1-1, 9.2.2):
$$\frac{A_{sw}}{s} \ge \frac{0.08\, \sqrt{f_{ck}}}{f_{yk}}\, b_w\quad \big[\text{units: } \mathrm{mm}^2/\mathrm{mm}\big]$$
Glossary of Variables
- b_w: web width (mm); d: effective depth (mm); h: overall depth (mm)
- f_ck: characteristic concrete strength (MPa); f_cd: design concrete strength (MPa)
- f_yk: characteristic yield strength of stirrups (MPa); f_ywd: design yield strength (MPa)
- γ_c, γ_s: partial safety factors for concrete and steel; α_cc: coefficient for long-term effects
- ρ_l: longitudinal tension reinforcement ratio A_sl/(b_w·d) (use % as input; capped at 2% in the formula)
- N_Ed: axial force at ULS (kN), compression positive; σ_cp: axial stress (MPa)
- V_Ed: applied design shear (kN); V_Rd,c: concrete shear resistance (kN)
- V_Rd,max: maximum shear capacity with truss model (kN)
- A_sw: total stirrup steel area per set (mm²); s: stirrup spacing (mm)
- θ: angle of compression strut; z ≈ 0.9d; v_1 = 0.6(1 − f_ck/250)
Worked Example
How It Works: A Step-by-Step Example
Given: b_w = 300 mm, d = 500 mm, h = 600 mm; f_ck = 30 MPa; f_yk = 500 MPa; γ_c = 1.5; γ_s = 1.15; α_cc = 1.0; ρ_l = 1.0%; V_Ed = 250 kN; N_Ed = 0; θ = 45°.
- Compute k = 1 + √(200/d) = 1 + √(200/500) = 1.632 ≤ 2.0.
- f_cd = α_cc f_ck / γ_c = 1.0·30/1.5 = 20 MPa. σ_cp = 0.
- C_Rd,c = 0.18/γ_c = 0.12. v_min = 0.035 k^(3/2) √f_ck ≈ 0.035·(1.632)^{1.5}·√30 ≈ 0.35 MPa.
- v_Rd,c = max[0.12·1.632·(100·0.01·30)^{1/3}, v_min] ≈ max[0.12·1.632·(30)^{1/3}, 0.35] ≈ 0.56 MPa.
- V_Rd,c = v_Rd,c·b_w·d = 0.56·300·500 / 1000 ≈ 84 kN.
- Since V_Ed > V_Rd,c, shear reinforcement is required. z ≈ 0.9d = 450 mm; cotθ = 1.
- f_ywd = min(f_yk/γ_s, 435) = min(500/1.15, 435) = 435 MPa. Required Asw/s = (250−84)·1000 / (450·435·1) ≈ 0.85 mm²/mm = 850 mm²/m.
- Minimum Asw/s = 0.08 √f_ck b_w / f_yk = 0.08·√30·300/500 ≈ 0.26 mm²/mm = 260 mm²/m. Governing is 850 mm²/m.
- Choose φ8 stirrups with 2 legs: A_sw = 2 · π·8²/4 = 100.5 mm². Spacing s = A_sw / (Asw/s) = 100.5 / 0.85 ≈ 118 mm. Check s ≤ min(0.75d, 600) ⇒ 0.75d = 375 mm, so OK.
- Check V_Rd,max with v_1 = 0.6(1−30/250)=0.528: V_Rd,max = α_cw b_w z v_1 f_cd /(cotθ+tanθ) = 1·300·450·0.528·20/(1+1)/1000 ≈ 712 kN. Since 250 kN ≤ 712 kN, OK.
The calculator reproduces these steps automatically and provides pass/fail tags and spacing recommendations.
Frequently Asked Questions (FAQ)
Do I need to model z precisely?
For beams with typical reinforcement layouts, z ≈ 0.9d is acceptable. If you have a detailed section analysis, you may replace z accordingly.
What if V_Ed exceeds V_Rd,max?
The section is not adequate in shear, regardless of stirrups. Increase b_w, d, f_ck, reduce θ (increase cotθ), or revise the structural system.
Can I input tension (negative N_Ed)?
Eurocode’s σ_cp term benefits compression only. Tensile axial force is conservatively ignored (σ_cp is not taken as negative here).
How is minimum stirrup spacing checked?
The tool limits spacing to s ≤ min(0.75·d, user limit). National Annexes may impose additional limits; verify against your NA.
Does the tool consider shear span-to-depth (a/d)?
No. The calculator focuses on sectional shear checks. For very small a/d (deep beams), specific provisions apply and are outside this tool’s scope.
Which units should I use?
Input geometry in mm, strengths in MPa, forces in kN. The tool handles conversions consistently.