Geometry / Polygons

Decagon Calculator

Calculate the properties of a regular decagon (10-gon): area, perimeter, side, inradius (apothem), circumradius and golden-ratio relations. Enter one parameter — get all.

Calculator

Results

Side length

Perimeter

Area

Inradius (apothem)

Circumradius

Steps

Regular decagon formulas

Let \( s \) be the side of a regular decagon (10 equal sides):

Perimeter: \( P = 10s \)

Area: \( A = \frac{5}{2} s^2 \sqrt{5 + 2\sqrt{5}} \approx 7.69420884\, s^2 \)

Inradius (apothem): \( r = \dfrac{s}{2 \tan(\pi/10)} \)

Circumradius: \( R = \dfrac{s}{2 \sin(\pi/10)} \approx 1.618\, s \)

The angle \( \pi/10 \) is 18°, so the decagon is closely linked to the golden ratio \( \varphi \approx 1.618 \).

From circumference to decagon

If you know the radius of the circle that the decagon is inscribed in, use \( s = 2R \sin(\pi/10) \) then apply the area formula.

FAQ

Does this work for irregular decagons?

No, because irregular decagons need more data (sides or coordinates). This tool follows the regular case like most online decagon calculators.


Audit: Complete
Formula (LaTeX) + variables + units
This section shows the formulas used by the calculator engine, plus variable definitions and units.
Formula (extracted LaTeX)
\[','\\]
','\
Formula (extracted text)
Perimeter: \( P = 10s \) Area: \( A = \frac{5}{2} s^2 \sqrt{5 + 2\sqrt{5}} \approx 7.69420884\, s^2 \) Inradius (apothem): \( r = \dfrac{s}{2 \tan(\pi/10)} \) Circumradius: \( R = \dfrac{s}{2 \sin(\pi/10)} \approx 1.618\, s \)
Variables and units
  • No variables provided in audit spec.
Sources (authoritative):
Changelog
Version: 0.1.0-draft
Last code update: 2026-01-19
0.1.0-draft · 2026-01-19
  • Initial audit spec draft generated from HTML extraction (review required).
  • Verify formulas match the calculator engine and convert any text-only formulas to LaTeX.
  • Confirm sources are authoritative and relevant to the calculator methodology.
Verified by Ugo Candido on 2026-01-19
Profile · LinkedIn
, ', svg: { fontCache: 'global' } }; ]], displayMath: [['\\[','\\]']] }, svg: { fontCache: 'global' } };, svg: { fontCache: 'global' } };