V = L \times W \times T
T_\text{ft} = \begin{cases} \frac{T_\text{in}}{12} & \text{(imperial)}\\[4pt] \frac{T_\text{cm}}{100} & \text{(metric)} \end{cases} \quad V_\text{yd}^3 = \frac{V_\text{ft}^3}{27} \quad V_{\text{m}^3} = V_\text{m}^3
V_\text{net} = V \times \left(1 + \frac{w}{100}\right)
\text{Bags}_{80} \approx 45 \times V_\text{yd}^3 \quad \text{Bags}_{60} \approx 60 \times V_\text{yd}^3 \quad \text{Bags}_{40} \approx 90 \times V_\text{yd}^3
\text{Weight} \approx \rho \times V_\text{net} \quad \text{with } \rho \approx \begin{cases} 150\ \text{lb/ft}^3 & \text{(2400 kg/m}^3) \end{cases}
\[ V = L \times W \times T \] \[ T_\text{ft} = \begin{cases} \frac{T_\text{in}}{12} & \text{(imperial)}\\[4pt] \frac{T_\text{cm}}{100} & \text{(metric)} \end{cases} \quad V_\text{yd}^3 = \frac{V_\text{ft}^3}{27} \quad V_{\text{m}^3} = V_\text{m}^3 \] \[ V_\text{net} = V \times \left(1 + \frac{w}{100}\right) \] \[ \text{Bags}_{80} \approx 45 \times V_\text{yd}^3 \quad \text{Bags}_{60} \approx 60 \times V_\text{yd}^3 \quad \text{Bags}_{40} \approx 90 \times V_\text{yd}^3 \] \[ \text{Weight} \approx \rho \times V_\text{net} \quad \text{with } \rho \approx \begin{cases} 150\ \text{lb/ft}^3 & \text{(2400 kg/m}^3) \end{cases} \]