Big-O Complexity Explorer
Pick a complexity class, plug in n, and see how fast it grows. Then compare with real algorithms like sorting, search, or graph traversals.
1. Choose complexity & input size
Try 10, 100, 1000…
2. Output
Complexity
—
Estimated steps
—
Growth feeling
—
Example
—
How to read Big-O
Big-O abstracts away constant factors and lower-order terms. When we say an algorithm is O(n), we mean its running time grows proportionally to the input size. When we say O(n²), doubling n roughly quadruples the work.
Formal definition
A function f(n) is O(g(n)) if there exist positive constants c and n₀ such that for all n ≥ n₀, we have
f(n) ≤ c · g(n).
Why it matters
As data grows, asymptotics dominate implementation details. That’s why interviewers, algorithm designers, and competitive programmers care about Big-O.