Normal Distribution Calculator

Enter mean (μ) and standard deviation (σ) of your normal distribution and compute PDF, CDF, tail probability, the probability between two values, and the inverse CDF (quantile). The shaded bell curve updates to show the selected area.

σ > 0

Illustrative only: area under the curve refers to current calculation.

z-score

PDF f(x)

CDF P(X ≤ x)

Area / Result

Formulas used

PDF:

\( f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left( - \frac{(x-\mu)^2}{2 \sigma^2} \right) \)

CDF:

\( F(x) = \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{x-\mu}{\sigma \sqrt{2}} \right) \right] \)

Standardize: \( z = \frac{x-\mu}{\sigma} \)

Typical tasks

  • Find P(X ≤ x) for a normal variable.
  • Find P(a < X < b) by subtracting two CDF values.
  • Find a critical value xα given a probability (inverse CDF).

Audit: Complete
Formula (LaTeX) + variables + units
This section shows the formulas used by the calculator engine, plus variable definitions and units.
Formula (extracted LaTeX)
\[','\\]
','\
Formula (extracted text)
PDF: \( f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left( - \frac{(x-\mu)^2}{2 \sigma^2} \right) \) CDF: \( F(x) = \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{x-\mu}{\sigma \sqrt{2}} \right) \right] \) Standardize: \( z = \frac{x-\mu}{\sigma} \)
Variables and units
  • No variables provided in audit spec.
Sources (authoritative):
Changelog
Version: 0.1.0-draft
Last code update: 2026-01-19
0.1.0-draft · 2026-01-19
  • Initial audit spec draft generated from HTML extraction (review required).
  • Verify formulas match the calculator engine and convert any text-only formulas to LaTeX.
  • Confirm sources are authoritative and relevant to the calculator methodology.
Verified by Ugo Candido on 2026-01-19
Profile · LinkedIn
, ', svg: { fontCache: 'global' } }; ]], displayMath: [['\\[','\\]']] }, svg: { fontCache: 'global' } };, svg: { fontCache: 'global' } };