Jacobian Matrix Calculator (2R Manipulator & General Jacobian)

Compute the Jacobian matrix, determinant, and inverse for a planar 2R robotic arm, plus a general 2D Jacobian for custom functions. Visualize singularities and see the formulas used.

Planar 2R Manipulator Jacobian

Model a simple 2‑link planar robot arm with link lengths \(L_1, L_2\) and joint angles \(\theta_1, \theta_2\) (in radians or degrees). The end‑effector position is:

\[ x = L_1 \cos\theta_1 + L_2 \cos(\theta_1 + \theta_2), \quad y = L_1 \sin\theta_1 + L_2 \sin(\theta_1 + \theta_2) \] \[ J(\theta_1,\theta_2) = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \end{bmatrix} \]
Angle units:

What is the Jacobian matrix?

The Jacobian matrix generalizes the derivative to multivariable vector functions. For a mapping \( \mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m \) with \( \mathbf{f}(x_1,\dots,x_n) = (f_1,\dots,f_m) \), the Jacobian is the \( m \times n \) matrix of first‑order partial derivatives:

\[ J(\mathbf{x}) = \begin{bmatrix} \dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial f_m}{\partial x_1} & \cdots & \dfrac{\partial f_m}{\partial x_n} \end{bmatrix}. \]

Intuitively, the Jacobian describes how small changes in the input variables produce changes in the outputs. It is the linear approximation of the function near a point.

Jacobian of a planar 2R manipulator

For a 2‑link planar robot arm with joint angles \( \theta_1, \theta_2 \) and link lengths \( L_1, L_2 \), the end‑effector position in the plane is:

\[ x(\theta_1,\theta_2) = L_1 \cos\theta_1 + L_2 \cos(\theta_1+\theta_2) \] \[ y(\theta_1,\theta_2) = L_1 \sin\theta_1 + L_2 \sin(\theta_1+\theta_2) \]

The Jacobian maps joint velocities \( \dot{\boldsymbol{\theta}} = [\dot{\theta}_1,\dot{\theta}_2]^T \) to end‑effector linear velocity \( \dot{\mathbf{p}} = [\dot{x},\dot{y}]^T \):

\[ \dot{\mathbf{p}} = J(\theta_1,\theta_2)\,\dot{\boldsymbol{\theta}} \] \[ J(\theta_1,\theta_2) = \begin{bmatrix} \dfrac{\partial x}{\partial \theta_1} & \dfrac{\partial x}{\partial \theta_2} \\ \dfrac{\partial y}{\partial \theta_1} & \dfrac{\partial y}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} -L_1 \sin\theta_1 - L_2 \sin(\theta_1+\theta_2) & -L_2 \sin(\theta_1+\theta_2) \\ L_1 \cos\theta_1 + L_2 \cos(\theta_1+\theta_2) & L_2 \cos(\theta_1+\theta_2) \end{bmatrix}. \]

Determinant and singularities

For the 2R arm, the determinant of the Jacobian simplifies to:

\[ \det(J) = L_1 L_2 \sin\theta_2. \]
  • If \( \det(J) \neq 0 \), the mapping from joint velocities to Cartesian velocities is locally invertible.
  • If \( \det(J) = 0 \), the robot is in a singular configuration and loses one degree of freedom in Cartesian space.

For a 2R planar manipulator, singularities occur when the links are collinear: \( \theta_2 = 0 \) (fully stretched) or \( \theta_2 = \pi \) (folded back).

How this calculator computes the general Jacobian

In the “General 2×2 Jacobian” tab, the calculator evaluates the Jacobian numerically using central finite differences. For example, for \( f_1(x,y) \):

\[ \frac{\partial f_1}{\partial x}(x_0,y_0) \approx \frac{f_1(x_0+h,y_0) - f_1(x_0-h,y_0)}{2h}, \quad \frac{\partial f_1}{\partial y}(x_0,y_0) \approx \frac{f_1(x_0,y_0+h) - f_1(x_0,y_0-h)}{2h}, \] with a small step \( h \).

This approach works for many smooth functions and is useful when an analytical derivative is tedious or unavailable. For high‑precision or symbolic work, tools like CAS systems (e.g. MATLAB, Mathematica, SymPy) are recommended.

Typical applications of the Jacobian matrix

  • Robotics: mapping joint velocities to end‑effector velocities, singularity analysis, force mapping.
  • Optimization & machine learning: gradients and backpropagation in neural networks.
  • Change of variables: transforming integrals and probability densities between coordinate systems.
  • Differential equations: linearization of nonlinear systems around equilibrium points.

Jacobian Matrix Calculator – FAQ