Interactive calculator

Choose nucleic acid type
Raw absorbance at 260 nm. Range is typically 0.01–3.0 depending on instrument.
cm
Enter your instrument’s optical path (e.g., 1.0 cm cuvette, 0.1–0.2 cm microvolume). The calculator normalizes to 1 cm.
×
If you diluted the sample before reading A260, enter that fold dilution (e.g., 10 for 1:10).
bp for dsDNA; nt for ssDNA/RNA
bp
Needed to convert mass to molarity and copy number. Use base pairs (bp) for dsDNA and nucleotides (nt) for ssDNA/RNA.
Used to compute 260/280 purity ratio (protein contamination check).
Used to compute 260/230 purity ratio (salt, phenol or chaotrope contamination check).

Results

Normalized A260 (1 cm)
Mass concentration
Molar concentration (requires length)
Copies per µL (requires length)
Purity ratios
260/280 —
260/230 —

Data source and methodology

Authoritative sources:

Tutti i calcoli si basano rigorosamente sulle formule e sui dati forniti da questa fonte.

The formula explained

Beer–Lambert law: A = \varepsilon \, c \, l
Mass concentration from A260 (normalized to 1 cm): C_{\text{mass}}(\mu g/mL) = F \times \frac{A_{260}}{l} \times D
F is the factor: 50 (dsDNA), 33 (ssDNA), 40 (RNA) µg/mL per A260; l in cm; D is the dilution factor.
Convert to ng/µL: 1\,\mu g/mL = 1\,ng/\mu L
Molarity: MW_{\text{dsDNA}} \approx 660 \times \text{bp},\quad MW_{\text{ssDNA}} \approx 330 \times \text{nt},\quad MW_{\text{RNA}} \approx 340 \times \text{nt}
C_{\text{nM}} = \dfrac{C_{\text{ng/}\mu L} \times 10^{6}}{MW\;(\text{g/mol})}
Copies per µL: \text{copies}/\mu L = C_{\text{nM}} \times 6.022\times 10^{8}

Glossary of variables

How it works: a step‑by‑step example

Scenario: dsDNA plasmid, A260 = 0.20, path length = 1.0 cm, dilution = 10×, fragment length = 3000 bp.

  1. Normalize A260 to 1 cm: A260/l = 0.20 / 1.0 = 0.20.
  2. Mass concentration (µg/mL): F × A260/l × D = 50 × 0.20 × 10 = 100 µg/mL = 100 ng/µL.
  3. MW ≈ 660 × 3000 = 1,980,000 g/mol.
  4. nM = (100 ng/µL × 10^6) / 1,980,000 ≈ 50.51 nM.
  5. Copies/µL = 50.51 × 6.022×10^8 ≈ 3.04×10^10 copies/µL.

Frequently asked questions (FAQ)

What purity ratios should I expect?

Typical pure values: dsDNA 260/280 ≈ 1.8, RNA ≈ 2.0. 260/230 should be ~2.0–2.4. Lower values suggest contaminants (proteins, salts, phenol, guanidinium).

Does path length matter with microvolume instruments?

Yes. Enter the instrument’s path length (often 0.05–0.2 cm). The calculator normalizes A260 to 1 cm before applying the factor.

How accurate are the universal factors (50/33/40)?

They are widely accepted approximations for average base composition. For oligos or unusual compositions, use a custom factor or sequence-specific ε for higher accuracy.

Why do nM and copies/µL require length?

Molarity depends on molecular weight, which scales with length. Without length, only mass concentration can be computed from A260.

Can I enter negative absorbance or extremely high values?

No. Absorbance must be ≥ 0. Values above instrument linearity (often ~2–3 A) can be inaccurate; dilute samples to stay within range.

Will this work for dsRNA or modified nucleic acids?

Use the closest model (RNA for dsRNA) or a custom factor. For heavily modified bases, sequence-specific extinction coefficients yield better results.

Strumento sviluppato da Ugo Candido. Contenuti verificati da CalcDomain Editorial Team.
Ultima revisione per l'accuratezza in data: .